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Introduction
Breast cancer is the most common cancer among women globally. 

In 2020, around 2.2 million women were diagnosed with breast 
cancer of whom 684,000 succumbed to the disease.1 By 2040, 
these numbers are predicted to increase to over 3 million new cases 
and 1 million deaths every year. Breast cancer incidence rates are 
highest in countries that have undergone economic transition, but 
currently transitioning countries carry a disproportionate share of 
breast cancer deaths due to their larger populations.2,3 The current 
gold standard for screening and early detection of breast cancer is 
mammography based on a mortality reduction of up to 41% for 
women regularly participating.4 While ultrasound and magnetic 
resonance imaging (MRI) are available as additional screening 
tools for early breast cancer detection, their utilization for this 
specific purpose is limited due to various constraints.5,6 Moreover, 
breast cancer screening programs are not implemented in every 
country and even if implemented not all women have access to 
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Abstract
Background and objectives: Breast cancer is one of the greatest global health concerns for women, with rising incidence 
rates and mortality projections, while affordability and access to mammography screening and diagnosis, especially in low- 
and middle-income countries, remain a challenge. This retrospective clinical validation study evaluated a breast cancer pre-
screening solution (BCPS) based on a commercially available smartphone with a thermal imaging sensor powered by artificial 
intelligence. The purpose was to measure the performance of the BCPS tool compared to mammography, the gold standard for 
first-pass examination in breast cancer screening.

Methods: The evaluation was conducted in the Erebouni Medical Center Breast Unit in Armenia over a period of six months. We 
tested a cohort of 478 women of whom 45 were finally diagnosed with breast cancer after biopsy. Participants were first screened 
with the BCPS before undergoing the standard breast screening pathway. After studying the mammography results, if malignancy 
was discovered, a biopsy was performed and taken as the ground truth when comparing with BCPS artificial intelligence results.

Results: When combined with patient-reported or clinical symptoms, the BCPS tool achieved a sensitivity of 89% and a speci-
ficity of 83% compared to mammography. When clinical or patient-reported symptoms were not taken into account, sensitivity 
was considerably lower (60%), while specificity was higher (88.2%).

Conclusions: The BCPS tool, in combination with basic clinical exams and patient-reported symptoms, may serve as a robust 
triaging tool for breast cancer detection where mammography is not available or affordable, identifying the majority of women 
who need further diagnostic assessment.
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regular screening, especially in low- and middle-income countries. 
Generally, the problem is more prominent in rural areas, where it 
is next to impossible to access mammograms and ultrasound ex-
aminations due to the lack of adequate personnel and equipment. 
With the growing cancer mortality rate, researchers are exploring 
new innovative imaging technologies for breast screening com-
bined with AI to help with early detection, which is crucial for 
survival.7–11

Breast thermography, as its name suggests, produces an image 
of the breast by highlighting temperature variations. Unlike meth-
ods that depict the physical structure of breast tissue, thermogra-
phy creates a functional image by visualizing temperature changes 
on the skin’s surface and was first used for screening breast cancer 
in 1956.12 In 1982, the United States Food and Drug Administra-
tion granted approval, acknowledging its role as a complementary 
adjunct tool to mammography for breast cancer screenings. Ther-
mal imaging works by detecting heat emitted from the body, and as 
cancerous tumors often have a higher metabolic rate than normal 
tissue, they emit more heat. This can be seen as a difference in 
temperature on a thermal image compared to normal tissue.13–15 
In the past, thermal imaging cameras were large and expensive, 
and had low sensitivity, making them impractical for breast cancer 
screening.16,17 However, recent advances in thermal technology 
have made it possible to create smaller and more affordable ther-
mal imaging sensors. These sensors such as FLIR Lepton (as used 
in this study) are already embedded in some smartphones, making 
them even more accessible. Another recent development is the use 
of artificial intelligence (AI) in thermal imaging. AI can be used 
to improve the analysis of thermal images and identify potential 
abnormalities in breast tissue temperature. This can help to reduce 
human error and subjectivity in interpreting thermal images, as has 
already been seen in the interpretation of mammograms.18

A Swedish life science company has combined existing smart-
phone-based thermal sensors and their own developed AI, creating 
a breast cancer pre-screening (BCPS) tool for primary care per-
sonnel. The company’s mission is to address the issue of delayed 
detection of breast cancer on a global scale. The BCPS solution 
is designed to be user-friendly and accessible to individuals who 
may not have specialized medical knowledge but work as nurses in 
primary care. It offers insights into the overall health of the chest, 
whether a person is experiencing symptoms or not, by focusing 
on metabolic information. Furthermore, the BCPS solution holds 
the potential to alleviate various obstacles that hinder women from 
accessing mammography screening. These barriers encompass 
factors such as fear, psychological concerns, financial constraints, 
limited availability, lack of awareness, and cultural factors.19

BCPS uses AI to analyze thermal images of the breast area at the 
pixel level. The BCPS can be performed in the first line of health-
care by a non-specialist. The AI gives a risk prediction score, and if 
the risk is high, the patient is recommended to visit a breast cancer 
specialist. The algorithm identifies abnormal temperature patterns 
that could be indicative of malignant tumor development as cancer 
is characterized by a significant increase in cell metabolism and 
hypervascularization.20,21 Both of these phenomena are accompa-
nied by a local increase in the temperature of the breast tissue in 
the affected region, which can be recorded via smartphone-based 
thermal sensors. The AI then analyzes the thermal image and iden-
tifies abnormal subtle changes that the human eye will not be able 
to see. New generation thermal sensors in consumer smartphones 
have a standard high resolution of 160x120 and 19.200 pixels and 
can detect temperature differences of 0.050°C (https://www.flir.
com/products/lepton/?model=500-0771-01&vertical=microcam&

segment=oem).
Combining these high-resolution thermal images with AI re-

duces human subjectivity in analyzing thermal images through 
automated interpretation. Machine learning algorithms are de-
ployed to analyze thermal images and produce scores by analyz-
ing medically interpretable parameters that depict the metabolic 
activity occurring within the breast tissue, thus providing insights 
into the potential presence of malignancies. This aligns with the 
prevailing trend in the realm of AI implementation in digital mam-
mography. In this domain, the utilization of machine learning algo-
rithms has demonstrated clinical advantages. These algorithms aid 
in extracting, detecting, characterizing, and categorizing radiomics 
features present in mammograms.22–24 The principles underlying 
AI-enhanced breast thermography closely resemble those of digi-
tal mammography. Currently, there is a renewed interest in evalu-
ating the role of AI-enhanced breast thermography as an adjunct 
modality for screening. This evaluation is being carried out across 
different medical centers that have all contributed to the discourse 
on this topic.25–27

The objective of this six-month retrospective clinical validation 
study in a breast unit in Armenia was to evaluate the detectability 
of breast cancer development using a smartphone-based thermal 
sensor and AI. The study will compare the results of the BCPS, an 
AI-powered thermal imaging test, to the gold standard screening 
method, mammography, in terms of determining the accuracy of 
BCPS (sensitivity, specificity). The results of this study will pro-
vide important information about the potential of BCPS to be used 
for breast cancer screenings.

Materials and methods

Study design
This study was a retrospective clinical validation where we eval-
uated a cohort of women who visited the local breast center for 
diagnostic and screening examinations during six months in the 
Erebouni Medical Center Breast Unit in Armenia. This study fol-
lowed the methodology of Strengthening the Reporting of Obser-
vational Studies in Epidemiology (STROBE).28 The study period 
lasted from 1 Dec 2022 to 31 May 2023 and the participants were 
478 women. The study was conducted in a widespread cohort 
design. Enrollment criteria were women, over 20 years old, and 
visiting the breast unit for breast examination, both symptomatic 
and asymptomatic. Exclusion criteria were women who refused to 
participate, were pregnant or breastfeeding, or who had previous or 
ongoing breast cancer treatment, surgery, or radiation therapy. Pa-
tients who agreed to participate after receiving information about 
BCPS and the study itself signed a written consent document.

Screening protocol
The initial evaluation step involved the patient exposing their up-
per body, allowing the skin to cool down for 10 minutes, and sub-
sequently replying to health-related questions. This process aimed 
to bring the patient’s body to a state of thermal equilibrium, a state 
where temperature is uniform and stable. This thermal equilibrium 
is crucial as it helps to accentuate any temperature irregularities, 
enabling the detection of potential abnormalities, such as tumors, 
with greater accuracy during thermal imaging. For the correct and 
systematic acquisition of thermal images via smartphone, the ex-
aminer was trained in working with the device and used a floor 
guidance tool to secure optimal imaging angles. The pre-screening 
with three thermal images (frontal, left, and right) of the patient’s 
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chest according to BCPS protocol did not alter the standard of care 
in the clinical pathway for any participant and is integrated as the 
first step before mammography, ultrasound, and possibly biopsy. 
For comparison, we used the results of mammography, and in the 
case of malignancy, the biopsy was taken as the ground truth. We 
then compared those results with the results of BCPS (thermal im-
ages combined with AI models and a health questionnaire, which 
the patient completed before BCPS began). To ensure data protec-
tion, all thermal images and personal data were anonymized for 
statistical evaluation. No optical sensor in the smartphone was uti-
lized, except for the thermal imaging sensor, which captures heat 
emitted from the patients' chest for analysis.

Screening device
BCPS was performed with a CAT S62 Pro smartphone, with the 
Teledyne FLIR Lepton 3.5 thermal sensor as a standard compo-
nent. The sensor provides a resolution of 160x120 (19.200 pixels) 
and can detect 0.050°C temperature changes. An Android applica-
tion was installed in the smartphone, which was used during the 
retrospective clinical validation for data collection of thermal im-
ages together with other health and personal data. The same appli-
cation was used to study the structured and labeled data in prepa-
ration for delivery to medical statisticians and machine learning 
engineers.

Artificial intelligence
In this chapter, we introduce our AI-driven methodology designed 
to analyze thermal images derived from original frontal, left, and 
right chest scans, culminating in the prediction of risk scores. The 
devised solution unfolds through a series of distinct stages, com-
mencing with automated breast segmentation followed by the iden-
tification of abnormal regions. Subsequently, interpretable features 
are constructed for the detected abnormal regions, which are then 
used to assign an abnormality score for each of the regions. The 
regions with the highest abnormality scores are then used to train 
an ensemble of Random Forest Classifiers.

The training dataset consisted of thermal images of 829 pa-
tients, collected 1 year prior to this validation study. Moreover, 
the medical team has identified and annotated the tumor regions 
on the thermal images for the 69 disease-positive patients in the 
training dataset. As explained below, we used these annotations for 
training a model that assigned an abnormality score for each of the 
detected regions.

Automated breast segmentation
We used a deep learning approach for segmenting breast regions 
from the original chest scans. Specifically, we adopted the well-
established U-Net architecture for this task.29 To ensure the mod-
el’s robustness and accuracy, we trained it on a dataset annotated 
by our team. The annotation process was facilitated by the open-
source labeling tool “LabelMe” (http://labelme2.csail.mit.edu/
Release3.0/index.php). Our automated breast segmentation model 
achieved a good segmentation accuracy, as evidenced by the In-
tersection over Union score of 95% on our dedicated test dataset.

Abnormal region detection
Following the segmentation of breast regions from the chest scans, 
our next objective was the detection of abnormal regions within 
these segmented breast areas. These abnormal regions are character-
ized by elevated temperatures when compared to the surrounding 
tissue. To achieve this task, we developed a region growing seg-
mentation algorithm tailored to the specific characteristics of the 

breast thermography images. This algorithm initiates the process by 
identifying high-temperature points within the breast regions. Sub-
sequently, it expands these regions iteratively, examining the tem-
perature gradient at each step. The growth process continues until 
the temperature gradient becomes smaller than a predefined thresh-
old value, signifying the boundaries of the abnormal region.

Feature construction
Following the detection of abnormal regions, our next step in-
volved the construction of diverse temperature and shape-based 
features to comprehensively describe these regions.

Temperature-based features
Temperature Delta: This feature quantified the temperature vari-
ation within an abnormal region by calculating the difference be-
tween the maximum and minimum temperatures observed within 
that region.

Relative Temperature
We computed the mean temperature difference between the abnor-
mal region and the surrounding healthy breast tissue, providing 
insights into the localized temperature variations within the breast.

Relative Temperature with Contralateral Comparison
To identify temperature asymmetries that can be indicative of po-
tential abnormalities, we introduced a feature that measures the 
mean temperature difference between the abnormal region and the 
corresponding region on the contralateral breast.

Shape-based features

Fractal Dimensionality
In line with findings that highlighted the association between ma-
lignancy and higher fractal dimensionality due to irregular tumor 
boundaries, we incorporated fractal dimensionality as a feature to 
describe the irregularity of the abnormal region boundaries.30

Irregularity
To further characterize the shape of abnormal regions, we intro-
duced a feature that identifies the hottest point within the region 
and computes the maximum distance from this point to the region’s 
boundary. This distance is then normalized by the area of the ab-
normal region, providing a quantifiable measure of irregularity.

These temperature and shape-based features collectively of-
fered a comprehensive and informative representation of abnormal 
breast regions, facilitating the identification and assessment of po-
tential anomalies in our thermographic breast imaging.

Abnormality scoring for multi-region breast abnormality assess-
ment
In the context of breast thermography, it is common to encounter 
multiple abnormal regions within each breast and view. To address 
this complexity, we had to either aggregate features across these 
regions, as demonstrated in prior studies, or select the most promi-
nent abnormal region and extract its features.31 In our approach, 
we chose the latter strategy, guided by precise annotations of tumor 
locations within our dataset. We trained a Random Forest classifier 
to assign an abnormality score to each of the abnormal regions. 
This score was instrumental in ranking the abnormal regions with-
in each view, with the region bearing the highest abnormality score 
selected for subsequent analyses. Our algorithm thus enabled the 
precise identification and prioritization of abnormal regions within 
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the breast thermography images, enhancing the accuracy and ef-
ficiency of the breast abnormality assessment.

Feature aggregation
After identifying the abnormal region with the highest abnormal-
ity score, we proceeded to construct the final feature set crucial 
for our predictive model. For each of the four breast views, left/
right frontal view and left/right side view, we incorporated the fea-
tures extracted from the selected abnormal region, thus facilitating 
a comprehensive analysis. These features were then complemented 
by a set of features describing the temperature variations between 
each of the views themselves, such as the median temperature dif-
ference between the left and right frontal breast regions.

By aggregating these diverse features, we created a robust and 
comprehensive feature set for our final predictions. This approach 
enabled our AI model to leverage spatial and temporal characteris-
tics, to enhance the accuracy of breast thermography abnormality 
assessment.

Final prediction
In our final phase, we used an ensemble of four random forest clas-
sifiers, which were trained using a 4-fold cross-validation technique 
on our training dataset. The input to each of these classifiers was the 
feature set detailed earlier, which encapsulated information encom-
passing spatial, temperature-related, and patient-specific attributes. 
The output generated by each classifier represented the probability 
of the patient having breast cancer. To arrive at a unified prediction, 
we calculated the final risk score by taking the simple mean of these 
four probabilities. This approach ensured that the final prediction 
was both robust and statistically sound, contributing to the accuracy 
and reliability of our breast cancer risk assessment.

Statistical analysis
In this medical study, statistical analysis was conducted by an in-
dependent statistician, Sona Hunanyan, affiliated with Yerevan 
State University. The study’s sample size was determined using 
a two-sided 95% confidence interval (CI), with an assumption of 
an 80% sensitivity and a desired confidence interval width of 0.3. 
The calculation was performed using the Clopper-Pearson interval 
(exact) method. Given a previously estimated breast cancer preva-
lence of 8% based on our prior data, we anticipated recruiting ap-
proximately 400 women for the study.

To assess the performance of our models in detecting breast ma-

lignancy, we computed sensitivity and specificity values. All sta-
tistical analyses were carried out using R Software version 4.2.2.

Results

Study population characteristics
A total of 478 eligible women who met the inclusion criteria and 
provided informed handwritten consent were incorporated into the 
data analysis. Among this cohort, 256 participants were below the 
age of 50, while 222 were aged 50 or older. All participants en-
rolled in the study underwent initial BCPS thermal imaging assess-
ments prior to undergoing screening via mammography. Among 
the cohort, 45 individuals (comprising 9.4% of the sample) were 
identified as having a positive disease status through a combina-
tion of mammography and ultrasonography results or biopsy ex-
aminations. Notably, 32 out of these 45 women (constituting 71% 
of the positive cases) exhibited palpable breast masses. In contrast, 
among the 433 patients classified as disease-negative based on 
screening outcomes, only 37 individuals were found to have pal-
pable breast masses. We present a detailed distribution of different 
characteristics of the study cohort in Table 1.

Evaluation
In the following, we present the outcomes of our BCPS tool. We 
investigate two distinct models: one reliant solely on thermal im-
aging predictions and another that incorporates these predictions in 
conjunction with the detection of palpable breast masses. We shall 
henceforth refer to these models as “Thermal Only” and “Thermal 
+ Palpable Mass” respectively. The latter model’s predictions are 
considered positive either when the Thermal Only model yields a 
positive result or when there exists a palpable mass on the breast. 
Detailed findings are summarized in Table 2.

The overall sensitivity of the Thermal Only model was deter-
mined to be 60% (95% CI, 47.3–6.2%), accompanied by a speci-
ficity of 88.2% (95% CI, 85.2–91.3%). However, upon integrating 
thermal imaging predictions with the identification of a palpable 
mass, the overall sensitivity exhibited a notable increase to 88.9% 
(95% CI, 80.2–98.6%), while maintaining a specificity of 80.1% 
(95% CI, 77–88.4%). Detailed receiver operating characteristic 
(ROC) curves and the corresponding area under the curve (AUC) 
values for both tests are presented in Figure 1. The Thermal Only 
model yielded an AUC score of 0.76, while the combined model 

Table 1.  Distribution of study population characteristics

Attribute Participants Number of Cancers Rate (95% CI)

Total Number 478 45 9.4 (7.1–12.4)

Age < 50 Years 256 (53.6) 16 6.2 (3.9–10.0)

Age ≥ 50 Years 222 (46.4) 29 13.1 (9.3–18.3)

Palpable Mass 69 (14.4) 32 46.4 (36.0–59.8)

No Palpable Mass 409 (85.6) 13 3.2 (1.9–5.4)

Pain 67 (14.0) 10 14.9 (8.4–26.4)

No Pain 411 (86.0) 35 8.5 (6.2–11.7)

Family History of Breast Cancer 64 (13.4) 9 14.1 (7.7–25.8)

No Family History of Breast Cancer 414 (86.6) 36 8.7 (6.4–11.9)

CI, confidence interval.

https://doi.org/10.14218/CSP.2023.00034S


DOI: 10.14218/CSP.2023.00034S  |  Volume 3 Issue 1, March 202412

Berberian N. et al: Thermal and AI: breast cancer pre-screeningCancer Screen Prev

achieved an AUC score of 0.88.
It is noteworthy that the performance of the Thermal Only mod-

el remains consistent across the cohorts of women with and with-
out palpable breast masses. As indicated in the table, the model 
demonstrates sensitivities of 59.4% (with a specificity of 94.6%) 
and 61.5% (with a specificity of 87.6%) for the respective cohorts 
with and without palpable masses.

The thermal imaging predictions exhibit a notable disparity in 
performance between women aged 50 years and older, as com-
pared to their younger counterparts. Specifically, the sensitivity 
among younger women is notably lower, measuring 43.8% (with a 
specificity of 90.8%). In contrast, for patients aged 50 and above, 
the sensitivity is considerably higher at 69% (with a specificity of 
85%). We attribute this discrepancy to a limitation inherent in our 
study protocol, specifically, the relatively brief waiting period of 
only 10 minutes for thermal equilibrium onset. Our dataset reveals 
that younger women tend to exhibit more pronounced thermal pat-
terns due to heightened hormonal activity. Therefore, it is plausible 

that extending the waiting time to 15 minutes may yield improved 
thermal equilibrium onset for younger patients. We intend to ad-
dress this issue comprehensively in our forthcoming studies.

It is worth noting that even taking into account the above-men-
tioned limitation, the combined model’s performance is robust. For 
both age groups, the combined model demonstrates a sensitivity of 
87.5% with a specificity of 79.2% for the younger population and 
a sensitivity of 89.7% with a specificity of 81.3% for patients aged 
50 years and older. This suggests that the integration of thermal 
imaging predictions with the detection of palpable masses contin-
ues to offer substantial diagnostic value across both age groups.

In Table 3 we present the model performances across differ-
ent cancer characteristics. Namely, we present the sensitivities de-
pending on the tumor size and tumor type.

Tumor size
In our study, we identified 10 malignant tumors with a size below 
2 cm (T1). The Thermal Only model detected 5 of these tumors 

Table 2.  Evaluation of 2 models on different population cohorts

Cohort
Thermal Only Thermal + Palpable Mass

Positive Predictions  
(Number of Cancers)

Negative Predictions  
(Number of Cancers)

Positive Predictions  
(Number of Cancers)

Negative Predictions  
(Number of Cancers)

Total 78 (27) 400 (18) 126 (40) 352 (5)

Age < 50 Years 29 (7) 227 (9) 64 (14) 192 (2)

Age ≥ 50 Years 49 (20) 173 (9) 62 (26) 160 (3)

Palpable Mass 21 (19) 48 (13) 69 (32) 0 (0)

No Palpable Mass 57 (8) 352 (5) 57 (8) 352 (5)

Fig. 1. ROC curves comparing the diagnostic performance of 2 models for breast cancer detection. AUC, area under the curve; ROC, receiver operating 
characteristic.
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(50% sensitivity), while the combined model detected 7 of them 
(70% sensitivity). As expected, the model performance is better 
for larger tumors: among the 35 tumors exceeding 2 cm in size, the 
Thermal Only model detected 22 of them, yielding a sensitivity 
of 62.9%, while the combined model detected 33 of them, corre-
sponding to a sensitivity of 94.3%.

Tumor type
Our analysis, presented in Table 3, reveals that the performance of 
the Thermal Only model exhibits consistent results across various 
tumor types. Of the 30 cases where biopsy tests were conducted, 
13 were categorized as Luminal A, 10 as Luminal B, and 7 encom-
passed Luminal Her 2, Her 2 positive, or Triple-Negative tumors. 
Regardless of tumor type or whether a biopsy test was conducted, 
the Thermal Only model consistently demonstrated a sensitivity of 
approximately 60%, ranging from 57.1% to 61.5%.

In contrast, the performance of the combined model displayed 
a notable correlation with tumor aggressiveness. For Luminal Her 
2, Her 2 positive, and triple-negative cases, the combined model 
detected all the tumor cases and exhibited strong performance for 
Luminal B tumors, with a sensitivity of 90%. These findings un-
derscore the potential of the combined model to excel in detecting 
more aggressive tumor types, offering enhanced diagnostic capa-
bilities in cases of heightened malignancy.

Discussion
Breast cancer remains a global health challenge with increasing 
incidence rates, and to address this issue, access to early screen-
ing and detection tools is critical, especially in low- and middle-
income countries where resources for standard screening methods 
such as mammography are limited, leading to significant mortal-
ity projections. In this context, the development of portable and 
affordable pre-screening and pre-diagnostic tools such as BCPS 
show promising potential. BCPS utilizes thermal imaging and AI 
to identify potential abnormalities in breast tissue temperature 
based on the higher metabolism found in tumorous tissue. This in-
novative approach has several advantages, including non-invasive-
ness, absence of radiation exposure, and cost-effectiveness, and 
this study, conducted in the breast unit of a hospital in Armenia, 
provides insights into the effectiveness of implementing BCPS for 
breast cancer screening and diagnosis.

While the sensitivity of thermal imaging alone was 60% com-
pared to mammography it has the potential to be a useful pre-
screening or pre-diagnostic tool for breast cancer, especially in 

women who may not have access to standard-of-care screening 
methods such as mammography. When combined with self-report-
ed or clinical symptoms, the sensitivity increased significantly to 
88.9%. By using BCPS to stratify patients for further investigation, 
we can focus our resources on those who are most likely to have 
cancer and reduce the number of unnecessary mammograms.

The study also provides insights into the performance of BCPS 
based on patient age and clinical characteristics, suggesting that 
BCPS may be more effective in detecting breast cancer in women 
over 50 years of age. This is evidenced by the higher cancer detec-
tion rate in this group, and one possible explanation for this find-
ing is that it may be more difficult to reach thermal equilibrium 
in younger women due to increased tissue activity. Thus, further 
research is needed to investigate this possibility and to identify 
ways to improve the effectiveness of BCPS in younger women. 
This might be achieved through a longer cooling time or a different 
thermal sensor that is better suited for younger women.

Overall, the study provides preliminary support for the potential 
of BCPS as a pre-screening tool, especially in settings where ac-
cess to standard screening methods is limited. However, the study 
has several limitations. First, the sample size is relatively small, 
with a low number of cancer cases; therefore, it was not possible 
to calculate statistically significant differences for tumor subtypes. 
This is because examinations were performed in only one center 
with a limited capacity. Second, the cohort of female participants 
comprised both diagnostic and screening cases. We separated the 
participants based on the presence or lack of symptoms under 
the assumption that examinations of symptomless women were 
screening. Third, we did not have access to a cancer registry; thus, 
we could not track interval cancers and could only compare BCPS 
to cancers found by mammography and biopsy-proven or speci-
men-proven cancers. Fourth, subgroup evaluation was limited due 
to small sample sizes in all subgroups. Despite these limitations, 
our study provides valuable insights into the potential of BCPS as 
a pre-screening tool. Future studies with larger sample sizes, more 
representative cohorts, and access to cancer registries are needed 
to confirm our findings and address the limitations of our study. 
At present, BCPS technology which is a combination of thermal 
imaging and AI is only applicable to breast cancer pre-screening, 
but in the future, there could be further applications such as moni-
toring neoadjuvant therapy effects for breast cancer.

Conclusions
This study provides evidence that the BCPS tool using a smart-

Table 3.  Sensitivity of 2 models across different cancer characteristics

Characteristic Number of  
Cancers

Thermal Only  
Sensitivity (%)

Thermal + Palpable  
Mass Sensitivity (%)

Tumor Size

  Below 2 cm 10 50 70

  Above 2 cm 35 62.9 94.3

Tumor Type

  Non-specific tumor type 15 60 86.7

  Luminal A 13 61.5 84.6

  Luminal B 10 60 90

  Luminal Her 2 or Her 2 Positive or Triple Negative 7 57.1 100
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phone-based thermal imaging sensor and AI in combination helps 
to detect breast cancers earlier, especially in settings where mam-
mography as a standard of care is not available or accessible as a 
first-pass screening or diagnostic tool. This is particularly relevant 
for low- and middle-income countries. BCPS can also be used in 
high-income countries to pre-screen women outside of the recom-
mended screening age range who seek primary care as a first step as 
well as to provide a pre-screening option for women who currently 
do not wish to undergo mammography for various reasons such as 
fear, psychological concerns, financial constraints, limited availabil-
ity, lack of awareness, and cultural factors and are thus being missed 
by healthcare. Further studies are needed to validate these findings. 
In the future, more studies should be performed for different use 
cases such as the investigation of pathological lymph nodes. Also, 
it might be useful to compare the device to other modalities used in 
breast cancer screening and detection such as POCT (Point-of-Care 
Testing), MRI, and CEM (contrast-enhanced mammography).
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